Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1387954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685962

RESUMO

Root architecture traits are belowground traits that harness moisture and nutrients from the soil and are equally important to above-ground traits in crop improvement. In soybean, the root length locus qRL16.1 was previously mapped on chromosome 16. The qRL16.1 has been characterized by transcriptome analysis of roots in near-isogenic lines (NILs), gene expression analysis in a pair of lines contrasting with alleles of qRL16.1, and differential gene expression analysis in germplasm accessions contrasting with root length. Two candidate genes, Glyma.16g108500 and Glyma.16g108700, have shown relatively higher expression in longer root accessions than in shorter rooting accessions. The C-terminal domain of Glyma.16g108500 and Glyma.16g108700 is similar to the conserved domain of C-terminally encoded peptides (CEPs) that regulate root length and nutrient response in Arabidopsis. Two polymorphisms upstream of Glyma.16g108500 showed a significant association with primary root length and total root length traits in a germplasm set. Synthetic peptide assay with predicted CEP variants of Glyma.16g108500 and Glyma.16g108700 demonstrated their positive effect on primary root length. The two genes are root-specific in the early stage of soybean growth and showed differential expression only in the primary root. These genes will be useful for improving soybean to develop a deep and robust root system to withstand low moisture and nutrient regimes.

2.
Plant Dis ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642544

RESUMO

Soybean (Glycine max, L.), a major oilseed crop of India faces anthracnose disease caused by Colletotrichum truncatum (Nataraj et al. 2021). Several weeds serve as alternative hosts for Colletotrichum spp. (Hartman et al. 1986). Around 24.67% of soybean fields in the study area were infested with Euphorbia geniculata (Kutariye et al. 2021). In September 2021, milkweed plants died in the field, showing irregular circular lesions with wavy margins on the stem, change in color of veins and veinlets from brown to black and leaves exhibiting a twisted appearance at ICAR-Indian Institute of Soybean Research, India. Later on plants completely died and acervuli of average size 284 µm were visualized under stereo microscopy. Twenty milkweed samples were collected, rinsed, and surface sterilized with NaOCl (1%). Fungus isolation was done from leaf and stem and transferred to sterilized Petri plates with Potato dextrose agar (PDA). The plates were incubated at 25 ± 2°C for 48 h with dark/light (10h/14h) cycle. The fungi produced circular, raised, black to light grey colonies. Sickle shaped aseptate conidia, measuring 23.14 µm length, 3.18 µm width and hyphal width 5.49 µm were confirmed using a compound microscope with 20X magnification. The fungus was purified via hyphal tip method and pure culture was maintained on PDA at (26 ± 2°C). Milkweed seedlings in clay pots were inoculated with a conidial suspension of the fungus (106 conidia/mL) prepared from ten days old culture using serial dilution technique. Soybean variety JS 95-60 was inoculated by atomizing 20 ml of the same suspension on each plant. The negative controls for both milkweed and soybean were inoculated with sterile distilled water. Veinal necrosis and acervuli formation were observed on both milkweed and soybean, but no signs or symptoms of disease were observed in the controls. The re-isolated fungus from both the diseased hosts resembled original culture as they produced black to light grey colonies, sickle shaped aseptate conidia and ITS sequence (OR124845) exhibiting 100% resemblance to C. truncatum isolate C-17 (MN736513), thus confirming Koch's postulates. The pathogen was classified as Colletotrichum spp. based on morphological and cultural characters and the pathogenicity test (Rajput et al. 2021). To confirm identity of the pathogen infecting milkweed, DNA was extracted from the reisolated fungus using the HiPurA Fungal DNA Purification Kit (HiMedia, India). The internal transcribed spacer (ITS) region, beta-tubulin (TUB2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified (Kumar et al. 2021). The GAPDH gene was amplified under similar reaction conditions except for annealing temp 59°C. For species level identification, the ITS, TUB2 and GAPDH gene sequences were submitted to GenBank with accession numbers OR004468, OQ869780 and OQ869781, respectively. The BLAST analysis of TUB2 and GAPDH gene showed sequence homology of 100% and 98.43% respectively with C. truncatum culture-collection CBS:151.35 (GU228156, GU228254). The isolate was identified as C. truncatum on the basis of molecular analysis, corroborating the above morphological identification. This is the first report of C. truncatum infecting milkweed in India, indicating milkweed as an alternative host in soybean fields, potentially raising inoculum levels and carryover between crops.

3.
Sci Rep ; 13(1): 8905, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264096

RESUMO

Charcoal rot disease caused by Macrophomina phaseolina (Tassi) Goid is one of the most devastating diseases in soybean in India. During 2018, 226 diverse soybean genotypes were evaluated for genetic resistance under hot-spot conditions. Out of them, a subset of 151 genotypes were selected based on Percent Disease Incidence (PDI) and better agronomic performance. Out of these 151 genotypes evaluated during 2019, 43 genotypes were selected based on PDI and superior agronomic performance for further field evaluation and molecular characterization. During 2020 and 2021, these forty-three genotypes, were evaluated for PDI, Area Under Disease Progress Curve (AUDPC), and grain yield. In 2020, genotype JS 20-20 showed least PDI (0.42) and AUDPC (9.37).Highest grain yield was recorded by the genotype JS 21-05 (515.00 g). In 2021, genotype JS 20-20 exhibited least PDI (0.00) and AUDPC (0.00).Highest grain yield was recorded in JS 20-98 (631.66 g). Across both years, JS 20-20 had the least PDI (0.21) and AUDPC (4.68), while grain yield was highest in JS 20-98 (571.67 g). Through MGIDI (multi-trait genotype-ideotype distance) analysis, JS 21-05 (G19), JS 22-01 (G43), JS 20-98 (G28) and JS 20-20 (G21) were identified as the ideotypes with respect to the traits that were evaluated. Two unique alleles, Satt588 (100 bp) on linkage group K (Chromosome no 9) and Sat_218 (200 bp) on linkage group H (Chromosome no 12), were specific for thetwo resistant genotypes JS 21-71and DS 1318, respectively. Through cluster analysis, it was observed that the genotypes bred at Jabalpur were more genetically related.


Assuntos
Glycine max , Melhoramento Vegetal , Glycine max/genética , Genótipo , Grão Comestível/genética , Variação Genética
4.
Front Genet ; 13: 939182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452161

RESUMO

Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.

5.
Sci Rep ; 11(1): 22853, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819529

RESUMO

Breeding for higher yield and wider adaptability are major objectives of soybean crop improvement. In the present study, 68 advanced breeding lines along with seven best checks were evaluated for yield and attributing traits by following group balanced block design. Three blocks were constituted based on the maturity duration of the breeding lines. High genetic variability for the twelve quantitative traits was found within and across the three blocks. Several genotypes were found to outperform check varieties for yield and attributing traits. During the same crop season, one of the promising entries, NRC 128,was evaluated across seven locations for its wider adaptability and it has shown stable performance in Northern plain Zone with > 20% higher yield superiority over best check PS 1347. However, it produced 9.8% yield superiority over best check in Eastern Zone. Screening for waterlogging tolerance under artificial conditions revealed that NRC 128 was on par with the tolerant variety JS 97-52. Based on the yield superiority, wider adaptability and waterlogging tolerance, NRC 128 was released and notified by Central Varietal Release Committee (CVRC) of India, for its cultivation across Eastern and Northern Plain Zones of India.


Assuntos
Genes de Plantas , Glycine max/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estações do Ano , Estresse Fisiológico , Adaptação Fisiológica , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Índia , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Locos de Características Quantitativas , Glycine max/crescimento & desenvolvimento
6.
Front Genet ; 12: 646102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936171

RESUMO

Seed size and shape traits are important determinants of seed yield and appearance quality in soybean [Glycine max (L.) Merr.]. Understanding the genetic architecture of these traits is important to enable their genetic improvement through efficient and targeted selection in soybean breeding, and for the identification of underlying causal genes. To map seed size and shape traits in soybean, a recombinant inbred line (RIL) population developed from K099 (small seed size) × Fendou 16 (large seed size), was phenotyped in three growing seasons. A genetic map of the RIL population was developed using 1,485 genotyping by random amplicon sequencing-direct (GRAS-Di) and 177 SSR markers. Quantitative trait locus (QTL) mapping was conducted by inclusive composite interval mapping. As a result, 53 significant QTLs for seed size traits and 27 significant QTLs for seed shape traits were identified. Six of these QTLs (qSW8.1, qSW16.1, qSLW2.1, qSLT2.1, qSWT1.2, and qSWT4.3) were identified with LOD scores of 3.80-14.0 and R 2 of 2.36%-39.49% in at least two growing seasons. Among the above significant QTLs, 24 QTLs were grouped into 11 QTL clusters, such as, three major QTLs (qSL2.3, qSLW2.1, and qSLT2.1) were clustered into a major QTL on Chr.02, named as qSS2. The effect of qSS2 was validated in a pair of near isogenic lines, and its candidate genes (Glyma.02G269400, Glyma.02G272100, Glyma.02G274900, Glyma.02G277200, and Glyma.02G277600) were mined. The results of this study will assist in the breeding programs aiming at improvement of seed size and shape traits in soybean.

7.
BMC Genomics ; 22(1): 132, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622237

RESUMO

BACKGROUND: The root system provides nutrient absorption and is closely related to abiotic stress tolerance, but it is difficult to study the roots under field conditions. This study was conducted to identify quantitative trait loci (QTL) associated with primary root length (PRL) during soybean seedling growth in hydroponic conditions. A total of 103 F7 recombinant inbred lines (RILs) derived from a cross between K099 (short primary root) and Fendou 16 (long primary root) were used to identify QTL for PRL in soybean. The RIL population was genotyped with 223 simple sequence repeats markers covering 20 chromosomes. Phenotyping for primary root length was performed for 3-weeks plants grown in hydoponic conditions. The identified QTL was validated in near isogenic lines and in a separate RIL population. RESULTS: QTL analysis using inclusive composite interval mapping method identified a major QTL on Gm16 between SSR markers Sat_165 and Satt621, explaining 30.25 % of the total phenotypic variation. The identified QTL, qRL16.1, was further confirmed in a segregating population derived from a residual heterozygous line (RHLs-98). To validate qRL16.1 in a different genetic background, QTL analysis was performed in another F6 RIL population derived from a cross between Union (medium primary root) and Fendou 16, in which a major QTL was detected again in the same genomic region as qRL16.1, explaining 14 % of the total phenotypic variation for PRL. In addition, the effect of qRL16.1 was confirmed using two pair of near-isogenic lines (NILs). PRL was significantly higher in NILs possessing the qRL16.1 allele from Fendou 16 compared to allele from K099. CONCLUSIONS: The qRL16.1 is a novel QTL for primary root length in soybean which provides important information on the genetic control of root development. Identification of this major QTL will facilitate positional cloning and DNA marker-assisted selection for root traits in soybean.


Assuntos
Glycine max , Locos de Características Quantitativas , Mapeamento Cromossômico , Hidroponia , Fenótipo , Plântula/genética , Glycine max/genética
8.
Curr Genomics ; 21(7): 504-511, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33214766

RESUMO

BACKGROUND: In this study, whole genome re-sequencing of rust resistant soybean genotype EC241780 was performed to understand the genomic landscape involved in the resistance mechanism. METHODS: A total of 374 million raw reads were obtained with paired-end sequencing performed with Illumina HiSeq 2500 instrument, out of which 287.3 million high quality reads were mapped to Williams 82 reference genome. Comparative sequence analysis of EC241780 with rust susceptible cultivars Williams 82 and JS 335 was performed to identify sequence variation and to prioritise the candidate genes. RESULTS: Comparative analysis indicates that genotype EC241780 has high sequence similarity with rust resistant genotype PI 200492 and the resistance in EC241780 is conferred by the Rpp1 locus. Based on the sequence variations and functional annotations, three genes Glyma18G51715, Glyma18G51741 and Glyma18G51765 encoding for NBS-LRR family protein were identified as the most prominent candidate for Rpp1 locus. CONCLUSION: The study provides insights of genome-wide sequence variation more particularly at Rpp1 loci which will help to develop rust resistant soybean cultivars through efficient exploration of the genomic resource.

9.
Physiol Mol Biol Plants ; 25(2): 387-398, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956422

RESUMO

A set of 90 Indian soybean landraces were analysed for polymorphism at 43 SSRs and five allele specific markers of four major genes involved in regulating flowering and photoperiod response. A total of 42 polymorphic SSRs had amplified 126 alleles which served as raw data for estimation of genetic relationship and population structure among 90 accessions. Rare alleles of four and three SSRs were detected in accessions IC18768 and IC15089, respectively. Gene diversity in the population ranges from 0.065 to 0.717 with a mean value of 0.411. The polymorphism information content of 42 SSRs varied from 0.063 to 0.668. Hierarchical clustering based on neighbour-joining method identified three major clusters among 90 soybean accessions. Model based population structure analysis divided the 90 soybean accessions into four populations (K = 4). Mean value of Fst for different populations ranged between 0.4143 and 0.7239. Genotyping of 90 accessions with allele specific markers had identified accession IC15089 as triple recessive mutant of flowering genes E1, E2 and photoperiod sensitivity gene E3. The triple mutant IC15089 (e1, e3, e3) had been characterized phenotypically and identified as early maturing (88 days) and photoperiod insensitive genotype under extended photoperiod. The present study characterized genetic relationship among 90 Indian soybean landraces and had identified a few diverse and unique genotypes for utilization in soybean breeding programmes targeting development of short duration and photoperiod insensitive varieties through marker assisted selection.

10.
PLoS One ; 12(6): e0179747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28654689

RESUMO

Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits.


Assuntos
Cajanus/genética , Genes de Plantas , Ligação Genética , Genoma de Planta , Genótipo , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas
11.
J Genet ; 96(1): 147-154, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28360399

RESUMO

Allelic combinations of major photoperiodic (E1, E3, E4) and maturity (E2) genes have extended the adaptation of quantitative photoperiod sensitive soybean crop from its origin (China ∼35◦N latitude) to both north (up to ∼50◦N) and south (up to 40◦S) latitudes, but their allelic status and role in India (6-35◦N) are unknown. Loss of function and hypoactive alleles of these genes are known to confer photoinsensitivity to long days and early maturity. Early maturity has helped to adapt soybean to short growing season of India. We had earlier found that all the Indian cultivars are sensitive to incandescent long day (ILD) and could identify six insensitive accessions through screening 2071 accessions under ILD. Available models for ILD insensitivity suggested that identified insensitive genotypes should be either e3/e4 or e1 (e1-nl or e1-fs) with either e3 or e4. We found that one of the insensitive accessions (EC 390977) was of e3/e4 genotype and hybridized it with four ILD sensitive cultivars JS 335, JS 95-60, JS 93-05, NRC 37 and an accession EC 538828. Inheritance studies and marker-based cosegregation analyses confirmed the segregation of E3 and E4 genes and identified JS 93-05 and NRC 37 as E3E3E4E4 and EC 538828 as e3e3E4E4. Further, genotyping through sequencing, derived cleaved amplified polymorphic sequences (dCAPS) and cleaved amplified polymorphic sequences (CAPS) markers identified JS 95-60 with hypoactive e1-as and JS 335 with loss of function e3-fs alleles. Presence of photoperiodic recessive alleles in these two most popular Indian cultivars suggested for their role in conferring early flowering and maturity. This observation could be confirmed in F2 population derived from the cross JS 95-60 × EC 390977, where individuals with e1-as e1-as and e4e4 genotypes could flower 7 and 2.4 days earlier, respectively. Possibility of identification of new alleles ormechanism for ILD insensitivity and use of photoinsensitivity in Indian conditions have been discussed.


Assuntos
Ritmo Circadiano/genética , Genes de Plantas , Genômica/métodos , Glycine max/genética , Fotoperíodo , Alelos , Genótipo , Repetições de Microssatélites , Fenótipo , Polimorfismo Genético , Locos de Características Quantitativas , Característica Quantitativa Herdável
12.
Front Plant Sci ; 7: 1852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066449

RESUMO

Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops.

13.
Physiol Mol Biol Plants ; 21(1): 101-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25649315

RESUMO

Molecular characterization and genetic diversity among 82 soybean accessions was carried out by using 44 simple sequence repeat (SSR) markers. Of the 44 SSR markers used, 40 markers were found polymorphic among 82 soybean accessions. These 40 polymorphic markers produced a total of 119 alleles, of which five were unique alleles and four alleles were rare. The allele number for each SSR locus varied between two to four with an average of 2.97 alleles per marker. Polymorphic information content values of SSRs ranged from 0.101 to 0.742 with an average of 0.477. Jaccard's similarity coefficient was employed to study the molecular diversity of 82 soybean accessions. The pairwise genetic similarity among 82 soybean accessions varied from 0.28 to 0.90. The dendrogram constructed based on genetic similarities among 82 soybean accessions identified three major clusters. The majority of genotypes including four improved cultivars were grouped in a single subcluster IIIa of cluster III, indicating high genetic resemblance among soybean germplasm collection in India.

14.
Virus Genes ; 48(1): 1-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445902

RESUMO

MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an organism's immune defence response, host miRNAs display a propensity to target viral genomes. During viral invasion, these virus-targeting miRNAs can be identified by their altered expression. All the while, pathogenic viruses, as a result of their long-term interaction with plants, have been evolving viral suppressors of RNA silencing (VSRs), as well as viral-encoded miRNAs as a counter-defence strategy. However, the gene silencing attribute of miRNAs has been ingeniously manipulated to down-regulate the expression of any gene of interest, including VSRs, in artificial miRNA (amiRNA)-based transgenics. Since we currently have a better understanding of the intricacies of miRNA-mediated gene regulation in plant-virus interactions, the majority of miRNAs manipulated to confer antiviral resistance to date are in plants. This review will share the insights gained from the studies of plant-virus combat and from the endeavour to manipulate miRNAs, including prospective challenges in the context of the evolutionary dynamics of the viral genome. Next generation sequencing technologies and bioinformatics analysis will further delineate the molecular details of host-virus interactions. The need for appropriate environmental risk assessment principles specific to amiRNA-based virus resistance is also discussed.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/genética , Vírus de Plantas/fisiologia , Plantas/imunologia , Plantas/virologia , RNA de Plantas/genética , Inativação Gênica , Vírus de Plantas/crescimento & desenvolvimento , Plantas/genética
15.
BMC Genet ; 13: 84, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23043321

RESUMO

BACKGROUND: Pigeonpea is an important grain legume of the semi-arid tropics and sub-tropical regions where it plays a crucial role in the food and nutritional security of the people. The average productivity of pigeonpea has remained very low and stagnant for over five decades due to lack of genomic information and intensive breeding efforts. Previous SSR-based linkage maps of pigeonpea used inter-specific crosses due to low inter-varietal polymorphism. Here our aim was to construct a high density intra-specific linkage map using genic-SNP markers for mapping of major quantitative trait loci (QTLs) for key agronomic traits, including plant height, number of primary and secondary branches, number of pods, days to flowering and days to maturity in pigeonpea. RESULTS: A population of 186 F2:3 lines derived from an intra-specific cross between inbred lines 'Pusa Dwarf' and 'HDM04-1' was used to construct a dense molecular linkage map of 296 genic SNP and SSR markers covering a total adjusted map length of 1520.22 cM for the 11 chromosomes of the pigeonpea genome. This is the first dense intra-specific linkage map of pigeonpea with the highest genome length coverage. Phenotypic data from the F2:3 families were used to identify thirteen QTLs for the six agronomic traits. The proportion of phenotypic variance explained by the individual QTLs ranged from 3.18% to 51.4%. Ten of these QTLs were clustered in just two genomic regions, indicating pleiotropic effects or close genetic linkage. In addition to the main effects, significant epistatic interaction effects were detected between the QTLs for number of pods per plant. CONCLUSIONS: A large amount of information on transcript sequences, SSR markers and draft genome sequence is now available for pigeonpea. However, there is need to develop high density linkage maps and identify genes/QTLs for important agronomic traits for practical breeding applications. This is the first report on identification of QTLs for plant type and maturity traits in pigeonpea. The QTLs identified in this study provide a strong foundation for further validation and fine mapping for utilization in the pigeonpea improvement.


Assuntos
Cajanus/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Cromossomos de Plantas/genética , Ligação Genética , Genoma de Planta , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
J Plant Biochem Biotechnol ; 21: 98-112, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24431589

RESUMO

Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety 'Asha'. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550 bp and >10-fold genome coverage, resulting in 510,809,477 bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable 'Arhar' simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.

17.
BMC Plant Biol ; 11: 17, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21251263

RESUMO

BACKGROUND: Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. RESULTS: In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. CONCLUSION: We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.


Assuntos
Cajanus/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições Minissatélites/genética , Alelos , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Loci Gênicos/genética , Marcadores Genéticos , Genótipo , Filogenia , Polimorfismo Genético , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...